Orthogonal Range Searching

Part 2

P

Last section:

Kd-tree » O (\/5 + k)

N

o,
3) (9 m € @ B

3//10119/(23 30 B 59{62470]80 97

A7
L

I ——

Search for a faster algorithm

Range tree > O0(log“n + k)

Faster than Kd-tree but

uses more storage:
O(n) - O(nlogn)

“

Query range: [x:x'] X [y:y']

First a binary search tree on [x: x| then we will
care about y-component.

General schema:

Canonical subset of v: Subset of points P at leaves of
subtree of node v: P(v) : O(logn)

-
HI

[9.12.14,15]

3 [+.7] @ [17.20] S) 9
T OWONCW O EECENC

|u Il-"

Mo =2 .Imzz.:?

“

Points of P that lie in [x: x'] = U disjoint P(v)

Those points laying in [y: y'] are important.

[Jis.
| |(3.8)
[, 7
(111, 5)
[ig. 4
7.3
|4, 2)
|8, 1)

\’

Every internal node stores a whole tree in an associated

structure, on “y” component

Range Tree:

\

Algorithm BUILD2DRANGETREE(P)

1. Construct the associated structure: Build a binary search
tree Tygs0c ON the set Py of y-coordinates in P

2. if P contains only one point

3. then Create a leaf v storing this point, and make
Jassoc the associated structure of v.

4. else Split P into Pieg and Prigp, the subsets < and >
the median x-coordinate xp,;g

5. Vieft — DBUILD2DRANGETREE(Peg)

6. Viight < BUILD2ZDRANGETREE(Pyigh)

7. Create a node Vv storing xp,;q, make Vg the left

child of v, make Vijgn the right child of v, and
make T,soc the associated structure of v
8. returnyv

w

Lemma 5.6:
Arange tree on a set of n points in the plane requires O(nlogn) storage.

Proof: 2 arguments

1. By level: on each level, any point is stored exactly once. So
all associated trees on one level together have 0(n) size.
Because the tree is of depth n, the storage will be O(nlogn).

2. By point: for any point, it is stored in the associated
structures of its search path. The depth of T is O(logn). So
it is stored in O(logn) of them. As there are n points, the

storage will be O(nlogn).
Therefore the total amount of storage required is O(nlogn).

T

The construction algorithm takes 0(nlog?n) time

T(1)=0()

T(n) = 2.T(n/2) + O(nlogn)
Line 1: O(nlogn)

Lines 4 to 8:
Recursive relation

Which solves to 0(nlog?n) time.

——

Suppose we pre-sort P on y component and whenever we split P into
Prert & Prignt, we keep the y-order.

For this sorted set we can build the associated structure in linear time.

Construction of Balanced Binary Search Tree on Sorted List takes 0(n)
time, Since we can find the median in 0(1) time.

Therefore the adapted algorithm takes O(nlogn) time, as sorting will
take O(nlogn) time either.

T(1) =0(1)

T(n) =2.T("/,) + 0(n)

Which solves to O(nlogn) time.

Performing 1DRangeQuery
on associated structures of

Selecting Canonical
subsets that contain
points of P which are in
[x, %]

l.

2
3.
4

abbank bl

10.

12

‘\

Algorithm 2DRANGEQUERY(T, [x: x| x [y : y'])
Input. A 2-dimensional range tree T and a range [x: x] x [y : y'].
Output. All points in T that lie in the range.

Vsplit < FINDSPLITNODE(T, x,x")
if Vgpii is a leaf
then Check if the point stored at vgpj;c must be reported.
else (+ Follow the path to x and call IDRANGEQUERY on the subtrees

right of the path.)
Ve lc(vsplit)
while v is not a leaf
doif x <xy
then | DRANGEQUERY/(Tyssoc(rc(v)), [y : V']
v —lc(v)

else v —re(v)
Check if the point stored at v must be reported.
Similarly, follow the path from rc(vgpi) to x’, call IDRANGE-
QUERY with the range [y : y'] on the associated structures of sub-
trees left of the path, and check if the point stored at the leaf where
the path ends must be reported.

\’

Lemma 5.7: A query with an axis-parallel rectangle in a range tree storing n

points takes 0(log?n + k) time, where k is the number of reported points.

We search in O(logn) associated structures to perform a 1D range query.

e Each call takes O(k, +log | T ;ss,.(V) |) = O(k, + logn) time.

Total Query Time = 0(},(k, + logn)) = O(K + log? n).

\

Theorem 5.8 Let P be a set of n points in the plane. A range tree for P uses

O (nlogn) storage and can be constructed in O (nlogn) time. By querying
this range tree one can report the points in P that lie in a rectangular query

range in O(log? n + k) time, where k is the number of reported points.

n | logn | log”n | /i

4 2 7 2

16 4 16 2}

64 6 36 38
256 3 64 | 16
1024 10 100 | 32
4096 12 144 | 64
16384 14 196 | 128
65536 16 256 | 256
1M 20 400 | 1K

Comparing efficiency:

Higher-Dimensional Range Trees

——
A d-dimensional range tree has
a main tree whichis a . /r’\“
one-dimensional balanced - i /\
binary search tree on the first
coordinate, where every node
has a pointer to an associated
structure thatis a

(d-1)-dimensional range tree
on the other coordinates

Primary Level:
BST on the 1st

coordinate ® T rssoc(V)

(d-1)-dimensional
VO Range Tree
on coord’s 2..d.

——

Theorem 5.9:

* LetP beaset of n points in d-dimensional space, where d = 2.

A range tree for P uses 0(nlog? 1n) storage and it can be constructed
in 0(nlog®~1n) time. One can report the points in P that lie in a rectangular
query range in 0(log®n + k) time, where k is the number of reported
points.

Construction Time: T,(n) = 0(nlog®*n)
Space: S,(n) = 0(nlog? 'n)
Query Time: Q,(n) = O(K + log?n)

\’

{T (n) 2T ()-|—Td 1(n)+o(n)

T,(n) =O(nlogn) }:Td (n) =0O(nlog“™n)

{S (n) 2S ()+Sd 1(n)_|_o(1)

S,(n)=0(nlogn) } = S4(n) =0(nlog™"n)

Q, (n) =O(log® n)
Q,(n) =O(K +log“ n)

\
Vo

QM) =0(K)+Q,(n)
Q, (n) =0O(logn)+0O(logn)-Q,_ (n) } = {
Q,(n) =0(log” n)

General sets of points

-’

Composite-Number Space: (a|b): a & b real numbers.
We now define a total order on this space:
For composite numbers (a|b) & (a'|b")
(alb) < (@d'|b)) = a<aor(a=a &b <Db)

For every p in set P, define:

p = (px, y) = b = ((oxlpy). (Py lPx))
Now we define range R as below:
R = [x:x'] X [y:y'] = R = [(x|=0): (x'|+00)] X [(y[|—00): (y'| +00)]

“

Lemma 5.10: Let p be a point and R a rectangular range. Then
pERSPER
Proof:

pER®Sx<p, <x'&y<p, <y
= (x]-0) < (px|py) < (&'|+0) &(y|=0) < (py|px) < (¥'[+0)
S PpER
Therefore we can use p instead of p and R instead of R in order to conquer the

degenerate case of points with same x- or y-components.

