
Orthogonal Range Searching
Part 2

Last section:

Kd-tree 𝑂 𝑛 + 𝑘

Search for a faster algorithm

Speed Memory

Range tree 𝑂 𝑙𝑜𝑔2𝑛 + 𝑘

Faster than Kd-tree but
uses more storage:

𝑂 𝑛 → 𝑂 𝑛𝑙𝑜𝑔𝑛

General schema:

𝑄𝑢𝑒𝑟𝑦 𝑟𝑎𝑛𝑔𝑒: 𝑥: 𝑥′ × 𝑦: 𝑦′

First a binary search tree on 𝑥: 𝑥′ then we will
care about y-component.

Canonical subset of v: Subset of points P at leaves of
subtree of node v: P(v) : 𝑂 𝑙𝑜𝑔𝑛

Points of P that lie in [𝑥: 𝑥′] = ∪ disjoint P(v)

Those points laying in [𝑦: 𝑦′] are important.

Every internal node stores a whole tree in an associated
structure, on “y” component

Range Tree:

Construction

Lemma 5.6:
A range tree on a set of n points in the plane requires 𝑂(𝑛𝑙𝑜𝑔𝑛) storage.

Proof: 2 arguments
1. By level: on each level, any point is stored exactly once. So

all associated trees on one level together have 𝑂 𝑛 size.
Because the tree is of depth n, the storage will be 𝑂(𝑛𝑙𝑜𝑔𝑛).

2. By point: for any point, it is stored in the associated

structures of its search path. The depth of Ƭ is 𝑂 𝑙𝑜𝑔𝑛 . So

it is stored in 𝑂 𝑙𝑜𝑔𝑛 of them. As there are n points, the

storage will be 𝑂(𝑛𝑙𝑜𝑔𝑛).

Therefore the total amount of storage required is 𝑂 𝑛𝑙𝑜𝑔𝑛 .

The construction algorithm takes 𝑂 𝑛𝑙𝑜𝑔2𝑛 time

𝑇 1 = 𝑂 1

𝑇 𝑛 = 2. 𝑇 𝑛
2 + 𝑂 𝑛𝑙𝑜𝑔𝑛

Which solves to 𝑂 𝑛𝑙𝑜𝑔2𝑛 time.

Lines 2 & 3

Line 1 : 𝑂 𝑛𝑙𝑜𝑔𝑛
 Lines 4 to 8:

Recursive relation

Suppose we pre-sort P on y component and whenever we split P into
𝑃𝐿𝑒𝑓𝑡 & 𝑃𝑅𝑖𝑔𝑕𝑡, we keep the y-order.

For this sorted set we can build the associated structure in linear time.

Construction of Balanced Binary Search Tree on Sorted List takes 𝑂 𝑛
time, Since we can find the median in 𝑂 1 time.

Therefore the adapted algorithm takes 𝑂 𝑛𝑙𝑜𝑔𝑛 time, as sorting will
take 𝑂 𝑛𝑙𝑜𝑔𝑛 time either.

𝑇 1 = 𝑂 1

𝑇 𝑛 = 2. 𝑇 𝑛
2 + 𝑂 𝑛

Which solves to 𝑂 𝑛𝑙𝑜𝑔𝑛 time.

Selecting Canonical
subsets that contain

points of P which are in
[𝑥, 𝑥′]

Performing 1DRangeQuery
on associated structures of

latter points,
Report Points of P which

are in [𝑦, 𝑦′]

We search in 𝑂(𝑙𝑜𝑔𝑛) associated structures to perform a 1D range query.

•Each call takes 𝑂(𝑘𝑣 + log | 𝑇𝑎𝑠𝑠𝑜𝑐(𝑣) |) = 𝑂(𝑘𝑣 + log 𝑛) time.

Total Query Time = 𝑂(𝑘𝑣 + 𝑙𝑜𝑔𝑛𝑣) = 𝑂(𝐾 + log2 𝑛).

Lemma 5.7: A query with an axis-parallel rectangle in a range tree storing n

points takes 𝑂 𝑙𝑜𝑔2𝑛 + 𝑘 time, where k is the number of reported points.

Theorem 5.8 Let P be a set of n points in the plane. A range tree for P uses

𝑂(𝑛log𝑛) storage and can be constructed in 𝑂(𝑛log𝑛) time. By querying

this range tree one can report the points in P that lie in a rectangular query

range in 𝑂(𝑙𝑜𝑔2 𝑛 + 𝑘) time, where k is the number of reported points.

Comparing efficiency:

A d-dimensional range tree has

a main tree which is a

one-dimensional balanced

binary search tree on the first

coordinate, where every node

has a pointer to an associated

structure that is a

(d−1)-dimensional range tree

on the other coordinates

Higher-Dimensional Range Trees

P(v)

v

P(v)

Tassoc(v)

root[T]

Primary Level:

BST on the 1st

coordinate

(d-1)-dimensional

 Range Tree

 on coord’s 2..d.

Theorem 5.9 :
• Let P be a set of n points in d-dimensional space, where 𝑑 ≥ 2.
A range tree for P uses 𝑂(𝑛𝑙𝑜𝑔𝑑−1𝑛) storage and it can be constructed
in 𝑂(𝑛𝑙𝑜𝑔𝑑−1𝑛) time. One can report the points in P that lie in a rectangular
query range in 𝑂(𝑙𝑜𝑔𝑑𝑛 + 𝑘) time, where k is the number of reported
points.

Construction Time: 𝑇𝑑(𝑛) = 𝑂(𝑛 𝑙𝑜𝑔𝑑−1 𝑛)

Space: 𝑆𝑑(𝑛) = 𝑂(𝑛 𝑙𝑜𝑔𝑑−1𝑛)

Query Time: 𝑄𝑑(𝑛) = 𝑂(𝐾 + log𝑑 𝑛)

 

 
































































)log()(

)(log)(ˆ

)(log)(ˆ

)(ˆ)(log)(log)(ˆ

)(ˆ)()(

)log()(
)log()(

)1()(2)(

)log()(
)log()(

)()(2)(

2

2

1

1

2

1

1

2

1

2

2

nKOnQ

nOnQ

nOnQ

nQnOnOnQ

nQKOnQ

nnOnS
nnOnS

OnSSnS

nnOnT
nnOnT

nOnTTnT

d

d

d

d
dd

dd

d

d

ddd

d

d

ddd

n

n

General sets of points

Composite-Number Space: 𝑎 𝑏 : a & b real numbers.

We now define a total order on this space:

For composite numbers 𝑎 𝑏 & 𝑎′ 𝑏′

𝑎 𝑏 < 𝑎′ 𝑏′ ⟺ 𝑎 < 𝑎′𝑜𝑟 𝑎 = 𝑎′&𝑏 < 𝑏′

For every p in set P, define:

 𝑝 ≔ 𝑝𝑥, 𝑝𝑦 → 𝑝 ≔ 𝑝𝑥 𝑝𝑦 , 𝑝𝑦 𝑝𝑥

Now we define range 𝑅 as below:
𝑅 ≔ 𝑥: 𝑥′ × 𝑦: 𝑦′ → 𝑅 ≔ 𝑥 −∞ : 𝑥′ +∞ × 𝑦 −∞ : 𝑦′ +∞

Lemma 5.10: Let p be a point and R a rectangular range. Then
𝑝 ∈ 𝑅 ⟺ 𝑝 ∈ 𝑅

Proof:

𝑝 ∈ 𝑅 ⟺ 𝑥 ≤ 𝑝𝑥 ≤ 𝑥′& 𝑦 ≤ 𝑝𝑦 ≤ 𝑦′

⟺ 𝑥 −∞ ≤ 𝑝𝑥 𝑝𝑦 ≤ 𝑥′ +∞ & 𝑦 −∞ ≤ 𝑝𝑦 𝑝𝑥 ≤ 𝑦′ +∞

⟺ 𝑝 ∈ 𝑅

Therefore we can use 𝑝 instead of p and 𝑅 instead of R in order to conquer the

degenerate case of points with same x- or y-components.

