Orthogonal Range Searching
 Part 2

Last section:
Kd-tree $\longrightarrow O(\sqrt{n}+k)$

Search for a faster algorithm

$$
\text { Range tree } \longrightarrow O\left(\log ^{2} n+k\right)
$$

Faster than Kd-tree but uses more storage: $O(n) \rightarrow O(n \log n)$

General schema:

$$
\text { Query range: }\left[x: x^{\prime}\right] \times\left[y: y^{\prime}\right]
$$

First a binary search tree on $\left[x: x^{\prime}\right]$ then we will care about y-component.

Canonical subset of v : Subset of points P at leaves of subtree of node $v: P(v): O(\log n)$

Points of P that lie in $\left[x: x^{\prime}\right]=U$ disjoint $\mathrm{P}(v)$

 Those points laying in $\left[y: y^{\prime}\right]$ are important.

Every internal node stores a whole tree in an associated structure, on " y " component

Range Tree:

Construction

Algorithm Build2DRangeTree (P)

1. Construct the associated structure: Build a binary search tree $\mathcal{T}_{\text {assoc }}$ on the set P_{y} of y-coordinates in P
2. if P contains only one point
3.

then Create a leaf v storing this point, and make $\mathcal{T}_{\text {assoc }}$ the associated structure of v.
4. else Split P into $P_{\text {left }}$ and $P_{\text {right }}$, the subsets \leq and $>$ the median x-coordinate $x_{\text {mid }}$
5. $\quad v_{\text {left }} \leftarrow \operatorname{Build} 2 D R$ angeTree $\left(P_{\text {left }}\right)$
6.
7. $v_{\text {right }} \leftarrow \operatorname{BulLD} 2 D R$ angeTree $\left(P_{\text {right }}\right)$ Create a node v storing $x_{\text {mid }}$, make $v_{\text {left }}$ the left child of v, make $v_{\text {right }}$ the right child of v, and make $\mathcal{T}_{\text {assoc }}$ the associated structure of v
8. return v

Lemma 5.6:
A range tree on a set of n points in the plane requires O ($n \log n$) storage.

Proof: 2 arguments

1. By level: on each level, any point is stored exactly once. So all associated trees on one level together have $O(n)$ size. Because the tree is of depth n , the storage will be $O(n \operatorname{logn})$.
2. By point: for any point, it is stored in the associated structures of its search path. The depth of T is $O(\log n)$. So it is stored in $O(\log n)$ of them. As there are n points, the storage will be $O(n \log n)$.
Therefore the total amount of storage required is $O(n \log n)$.

The construction algorithm takes $O\left(n \log ^{2} n\right)$ time

$$
T(1)=O(1)
$$

$$
T(n)=2 . T(n / 2)+O(n \log n) .
$$

Which solves to $O\left(n \log ^{2} n\right)$ time.

Suppose we pre-sort P on y component and whenever we split P into $P_{\text {Left }} \& P_{\text {Right }}$, we keep the y-order.

For this sorted set we can build the associated structure in linear time.
Construction of Balanced Binary Search Tree on Sorted List takes $O(n)$ time, Since we can find the median in $O(1)$ time.

Therefore the adapted algorithm takes $O(n \log n)$ time, as sorting will take $O(n \log n)$ time either.

$$
\begin{gathered}
T(1)=O(1) \\
T(n)=2 \cdot T(n / 2)+O(n)
\end{gathered}
$$

Which solves to $O(n \log n)$ time.

Selecting Canonical subsets that contain points of P which are in

$$
\left[x, x^{\prime}\right]
$$

Performing 1DRangeQuery on associated structures of latter points,
Report Points of P which are in $\left[y, y^{\prime}\right]$

Algorithm 2DRangeQuery $\left(\mathcal{T},\left[x: x^{\prime}\right] \times\left[y: y^{\prime}\right]\right)$

Input. A 2-dimensional range tree \mathcal{T} and a range $\left[x: x^{\prime}\right] \times\left[y: y^{\prime}\right]$.
Output. All points in \mathcal{T} that lie in the range.

1. $\quad v_{\text {split }} \leftarrow$ FINDSPLITNODE $\left(\mathcal{T}, x, x^{\prime}\right)$
2. if $v_{\text {split }}$ is a leaf
3. then Check if the point stored at $v_{\text {split }}$ must be reported.
4. else (* Follow the path to x and call 1DRANGEQUERY on the subtrees right of the path. $*$)
5. $\quad v \leftarrow l c\left(v_{\text {split }}\right)$
6. while v is not a leaf
7. do if $x \leqslant x_{v}$
8.
9.
10.

then 1DRANGEQUERY $\left(\mathcal{T}_{\text {assoc }}(r c(v)),\left[y: y^{\prime}\right]\right)$
$v \leftarrow l c(v)$
else $v \leftarrow r c(v)$
11. Check if the point stored at v must be reported.
12. Similarly, follow the path from $r c\left(v_{\text {split }}\right)$ to x^{\prime}, call 1DRANGEQUERY with the range $\left[y: y^{\prime}\right]$ on the associated structures of subtrees left of the path, and check if the point stored at the leaf where the path ends must be reported.

Lemma 5.7: A query with an axis-parallel rectangle in a range tree storing n points takes $O\left(\log ^{2} n+k\right)$ time, where k is the number of reported points.

We search in $O(\log n)$ associated structures to perform a 1D range query.

- Each call takes $O\left(k_{v}+\log \left|T_{a s s o c}(v)\right|\right)=O\left(k_{v}+\log n\right)$ time.

Total Query Time $=O\left(\sum_{v}\left(k_{v}+\log n\right)\right)=O\left(K+\log ^{2} n\right)$.

Theorem 5.8 Let P be a set of n points in the plane. A range tree for P uses
$O(n \log n)$ storage and can be constructed in $O(n \log n)$ time. By querying this range tree one can report the points in P that lie in a rectangular query range in $O\left(\log ^{2} n+k\right)$ time, where k is the number of reported points.

n	$\log n$	$\log ^{2} n$	\sqrt{n}
4	2	4	2
16	4	16	4
64	6	36	8
256	8	64	16
1024	10	100	32
4096	12	144	64
16384	14	196	128
65536	16	256	256
1 M	20	400	1 K

Higher-Dimensional Range Trees

A d-dimensional range tree has a main tree which is a one-dimensional balanced binary search tree on the first coordinate, where every node has a pointer to an associated structure that is a
(d-1)-dimensional range tree on the other coordinates

Theorem 5.9:

- Let P be a set of n points in d-dimensional space, where $d \geq 2$. A range tree for P uses $O\left(n \log ^{d-1} n\right)$ storage and it can be constructed in $O\left(n \log ^{d-1} n\right)$ time. One can report the points in P that lie in a rectangular query range in $O\left(\log ^{d} n+k\right)$ time, where k is the number of reported points.

Construction Time:

$$
\begin{aligned}
& T_{d}(n)=O\left(n \log ^{d-1} n\right) \\
& S_{d}(n)=O\left(n \log ^{d-1} n\right) \\
& Q_{d}(n)=O\left(K+\log ^{d} n\right)
\end{aligned}
$$

$$
\begin{gathered}
\left\{\begin{array}{c}
T_{d}(n)=2 T_{d}\left(\frac{n}{2}\right)+T_{d-1}(n)+O(n) \\
T_{2}(n)=O(n \log n)
\end{array}\right\} \Rightarrow T_{d}(n)=O\left(n \log ^{d-1} n\right) \\
\left\{\begin{array}{c}
S_{d}(n)=2 S_{d}\left(\frac{n}{2}\right)+S_{d-1}(n)+O(1) \\
S_{2}(n)=O(n \log n)
\end{array}\right\} \Rightarrow S_{d}(n)=O\left(n \log ^{d-1} n\right) \\
\left\{\begin{array}{c}
Q_{d}(n)=O(K)+\hat{Q}_{d}(n) \\
\hat{Q}_{d}(n)=O(\log n)+O(\log n) \cdot \hat{Q}_{d-1}(n) \\
\hat{Q}_{2}(n)=O\left(\log ^{2} n\right)
\end{array}\right\} \Rightarrow\left\{\begin{array}{c}
\hat{Q}_{d}(n)=O\left(\log ^{d} n\right) \\
Q_{d}(n)=O\left(K+\log ^{d} n\right)
\end{array}\right.
\end{gathered}
$$

General sets of points

Composite-Number Space: ($a \mid b$): a \& b real numbers.
We now define a total order on this space:
For composite numbers $(a \mid b) \&\left(a^{\prime} \mid b^{\prime}\right)$

$$
(a \mid b)<\left(a^{\prime} \mid b^{\prime}\right) \Leftrightarrow a<a^{\prime} \text { or }\left(a=a^{\prime} \& b<b^{\prime}\right)
$$

For every p in set P , define:

$$
p:=\left(p_{x}, p_{y}\right) \rightarrow \hat{p}:=\left(\left(p_{x} \mid p_{y}\right),\left(p_{y} \mid p_{x}\right)\right)
$$

Now we define range \hat{R} as below:

$$
R:=\left[x: x^{\prime}\right] \times\left[y: y^{\prime}\right] \rightarrow \hat{R}:=\left[(x \mid-\infty):\left(x^{\prime} \mid+\infty\right)\right] \times\left[(y \mid-\infty):\left(y^{\prime} \mid+\infty\right)\right]
$$

Lemma 5.10: Let p be a point and R a rectangular range. Then

$$
p \in R \Leftrightarrow \hat{p} \in \hat{R}
$$

Proof:

$$
\begin{gathered}
p \in R \Leftrightarrow x \leq p_{x} \leq x^{\prime} \& y \leq p_{y} \leq y^{\prime} \\
\Leftrightarrow(x \mid-\infty) \leq\left(p_{x} \mid p_{y}\right) \leq\left(x^{\prime} \mid+\infty\right) \&(y \mid-\infty) \leq\left(p_{y} \mid p_{x}\right) \leq\left(y^{\prime} \mid+\infty\right) \\
\Leftrightarrow \hat{p} \in \hat{R}
\end{gathered}
$$

Therefore we can use \hat{p} instead of p and \hat{R} instead of R in order to conquer the degenerate case of points with same x - or y-components.

