
Orthogonal Range Searching 
Part 2 



Last section: 

Kd-tree                          𝑂 𝑛 + 𝑘  



Search for a faster algorithm 

Speed Memory 

Range tree                           𝑂 𝑙𝑜𝑔2𝑛 + 𝑘  

Faster than Kd-tree but  
uses more storage: 

𝑂 𝑛 → 𝑂 𝑛𝑙𝑜𝑔𝑛  



General schema: 

𝑄𝑢𝑒𝑟𝑦 𝑟𝑎𝑛𝑔𝑒: 𝑥: 𝑥′ × 𝑦: 𝑦′  

First a binary search tree on 𝑥: 𝑥′  then we will 
care about y-component. 

Canonical subset of v: Subset of points P at leaves of 
subtree of node v: P(v) : 𝑂 𝑙𝑜𝑔𝑛   



Points of P that lie in [𝑥: 𝑥′] = ∪ disjoint P(v) 

Those points laying in [𝑦: 𝑦′] are important. 



Every internal node stores a whole tree in an associated 
structure, on “y” component 

 
Range Tree: 



Construction 



Lemma 5.6: 
A range tree on a set of n points in the plane requires 𝑂(𝑛𝑙𝑜𝑔𝑛) storage. 

Proof: 2 arguments 
1. By level: on each level, any point is stored exactly once. So 

all associated trees on one level together have 𝑂 𝑛  size. 
Because the tree is of depth n, the storage will be 𝑂(𝑛𝑙𝑜𝑔𝑛).  

2. By point: for any point, it is stored in the associated 

structures of its search path. The depth of Ƭ is 𝑂 𝑙𝑜𝑔𝑛 . So 

it is stored in 𝑂 𝑙𝑜𝑔𝑛  of them. As there are n points, the 

storage will be 𝑂(𝑛𝑙𝑜𝑔𝑛).  

Therefore the total amount of storage required is 𝑂 𝑛𝑙𝑜𝑔𝑛 .  



The construction algorithm takes 𝑂 𝑛𝑙𝑜𝑔2𝑛  time  

𝑇 1 = 𝑂 1  

𝑇 𝑛 = 2. 𝑇 𝑛
2 + 𝑂 𝑛𝑙𝑜𝑔𝑛  

Which solves to 𝑂 𝑛𝑙𝑜𝑔2𝑛  time. 

Lines 2 & 3  

Line 1 : 𝑂 𝑛𝑙𝑜𝑔𝑛  
 Lines 4 to 8: 

Recursive relation 



Suppose we pre-sort P on y component and whenever we split P into 
𝑃𝐿𝑒𝑓𝑡 & 𝑃𝑅𝑖𝑔𝑕𝑡, we keep the y-order. 

 
For this sorted set we can build the associated structure in linear time. 
 
Construction of Balanced Binary Search Tree on Sorted List takes 𝑂 𝑛  
time, Since we can find the median in 𝑂 1  time.  
 
Therefore the adapted algorithm takes 𝑂 𝑛𝑙𝑜𝑔𝑛  time, as sorting will 
take 𝑂 𝑛𝑙𝑜𝑔𝑛  time either. 

𝑇 1 = 𝑂 1  

𝑇 𝑛 = 2. 𝑇 𝑛
2 + 𝑂 𝑛  

Which solves to 𝑂 𝑛𝑙𝑜𝑔𝑛  time. 



Selecting Canonical 
subsets that contain 

points of P which are in 
[𝑥, 𝑥′] 

Performing 1DRangeQuery 
on associated structures of 

latter points, 
Report Points of P which 

are in [𝑦, 𝑦′] 





We search in 𝑂(𝑙𝑜𝑔𝑛) associated structures to perform a 1D range query. 

•Each call takes 𝑂(𝑘𝑣 + log | 𝑇𝑎𝑠𝑠𝑜𝑐(𝑣) | )  =  𝑂(𝑘𝑣 + log 𝑛) time. 

Total Query Time = 𝑂( 𝑘𝑣 + 𝑙𝑜𝑔𝑛𝑣 )  =  𝑂(𝐾 + log2 𝑛). 

Lemma 5.7: A query with an axis-parallel rectangle in a range tree storing n 

points takes 𝑂 𝑙𝑜𝑔2𝑛 + 𝑘  time, where k is the number of reported points.  



Theorem 5.8 Let P be a set of n points in the plane. A range tree for P uses 

𝑂(𝑛log𝑛) storage and can be constructed in 𝑂(𝑛log𝑛) time. By querying 

this range tree one can report the points in P that lie in a rectangular query 

range in 𝑂(𝑙𝑜𝑔2 𝑛 + 𝑘) time, where k is the number of reported points. 

Comparing efficiency: 



A d-dimensional range tree has 

a main tree which is a 

one-dimensional balanced 

binary search tree on the first 

coordinate, where every node 

has a pointer to an associated 

structure that is a 

(d−1)-dimensional range tree 

on the other coordinates 

Higher-Dimensional Range Trees 



P(v) 

v 

P(v) 

Tassoc(v) 

root[T ] 

Primary Level: 

BST on the 1st  

coordinate 

(d-1)-dimensional 

 Range Tree 

 on coord’s 2..d. 



Theorem 5.9 : 
• Let P be a set of n points in d-dimensional space, where 𝑑 ≥ 2. 
A range tree for P uses 𝑂(𝑛𝑙𝑜𝑔𝑑−1𝑛) storage and it can be constructed 
in 𝑂(𝑛𝑙𝑜𝑔𝑑−1𝑛) time. One can report the points in P that lie in a rectangular 
query range in 𝑂(𝑙𝑜𝑔𝑑𝑛 + 𝑘) time, where k is the number of reported 
points. 

Construction Time:   𝑇𝑑(𝑛)  =  𝑂(𝑛 𝑙𝑜𝑔𝑑−1 𝑛) 

Space:                    𝑆𝑑(𝑛)  =  𝑂(𝑛 𝑙𝑜𝑔𝑑−1𝑛) 

Query Time:             𝑄𝑑(𝑛)  =  𝑂(𝐾 + log𝑑 𝑛) 



 

 
































































)log()(

)(log)(ˆ

)(log)(ˆ

)(ˆ)(log)(log)(ˆ

)(ˆ)()(

)log()(
)log()(

)1()(2)(

)log()(
)log()(

)()(2)(

2

2

1

1

2

1

1

2

1

2

2

nKOnQ

nOnQ

nOnQ

nQnOnOnQ

nQKOnQ

nnOnS
nnOnS

OnSSnS

nnOnT
nnOnT

nOnTTnT

d

d

d

d
dd

dd

d

d

ddd

d

d

ddd

n

n



General sets of points 

Composite-Number Space: 𝑎 𝑏 : a & b real numbers. 

We now define a total order on this space:  

For composite numbers 𝑎 𝑏  & 𝑎′ 𝑏′  

𝑎 𝑏 < 𝑎′ 𝑏′ ⟺ 𝑎 < 𝑎′𝑜𝑟 𝑎 = 𝑎′&𝑏 < 𝑏′  

For every p in set P, define: 

 𝑝 ≔ 𝑝𝑥, 𝑝𝑦 → 𝑝 ≔ 𝑝𝑥 𝑝𝑦 , 𝑝𝑦 𝑝𝑥  

Now we define range 𝑅  as below: 
𝑅 ≔ 𝑥: 𝑥′ × 𝑦: 𝑦′ → 𝑅 ≔ 𝑥 −∞ : 𝑥′ +∞ × 𝑦 −∞ : 𝑦′ +∞  



Lemma 5.10: Let p be a point and R a rectangular range. Then  
𝑝 ∈ 𝑅 ⟺ 𝑝 ∈ 𝑅  

Proof:  

𝑝 ∈ 𝑅 ⟺ 𝑥 ≤ 𝑝𝑥 ≤ 𝑥′& 𝑦 ≤ 𝑝𝑦 ≤ 𝑦′ 

⟺ 𝑥 −∞ ≤ 𝑝𝑥 𝑝𝑦 ≤ 𝑥′ +∞  & 𝑦 −∞ ≤ 𝑝𝑦 𝑝𝑥 ≤ 𝑦′ +∞  

⟺ 𝑝 ∈ 𝑅  

Therefore we can use 𝑝  instead of p and 𝑅  instead of R in order to conquer the 

degenerate case of points with same x- or y-components. 


